Journal of Chromatography, 375 (1986) 207-211
Biomedical Applications
Elsevier Science Publishers B V, Amsterdam - Printed in The Netherlands

CHROMBIO 2909

Note

Determination of ketobemidone in plasma by high-performance liquid chromatography with electrochemical detection

PER-ÅKE HYNNING, PER ANDERSON, ULF BONDESSON and LARS O BORÉUS*

Department of Clinical Pharmacology, Karolinska Hospital, S-104 01 Stockholm (Sweden)

(First received August 6th, 1985, revised manuscript received October 3rd 1985)

Ketobemidone, 1-[4-(3-hydroxyphenyl)-1-methyl-4-piperidyl]-1-propanone, is a narcotic analgesic used in the treatment of severe pain. It has been detected in urine by thin-layer chromatography (TLC) [1] and quantified in plasma and urine by gas chromatography—mass spectrometry (GC-MS) [2, 3]. However, TLC gives a poor quantitation and GC-MS is a relatively expensive technique not generally available in all clinical laboratories. Since ketobemidone, like many other analgesics, is a phenolic substance, it is possible to oxidize it electrochemically. The introduction of commercially available electrochemical detectors provides new possibilities for analysing these compounds in biological samples at low concentrations with a sensitivity equal to that obtained with GC-MS. This paper reports a high-perforamnce liquid chromatographic (HPLC) method for quantification of ketobemidone in plasma with electrochemical detection.

EXPERIMENTAL

Reagents

Ketobemidone hydrochloride was obtained from Lundbeck A/S (Copenhagen, Denmark) The internal standard, 3-(3-hydroxyphenyl)-N-n-propylpiperidine (3-PPP), was a gift from Drs A. Carlsson and L Gunne (Uppsala, Sweden) The drugs tested for interference (see Table II) were obtained from the respective manufacturers Acetonitrile, dichloromethane and 1-butanol were of LiChrosolv quality (Merck, Darmstadt, F R G.) Sodium dodecyl sulphate was of electrophoretic purity (Bio-Rad, Richmond, CA, U S A). The water used for the mobile phase was distilled over potassium

0378-4347/86/\$03 50 © 1986 Elsevier Science Publishers B V

permanganate at basic pH for eliminating traces of organic material. All other chemicals were of analytical grade (Merck).

Chromatography

The HPLC system consisted of a Constametric III pump (LDC, Riviera Beach, FL, USA) equipped with a pulse dampener (Touzart-Matignon, France), a Rheodyne Model 7125 sample injector with a 50-µl sample loop, an LC-4A amperometric detector (Bioanalytical System, West Lafayette, IN, U.S.A.) equipped with a Model TL-5A glassy carbon working electrode, an Ag/AgCl reference electrode and a Servogor dual-pen recorder (Vienna, Austria). Chromatography was performed on a 150 \times 3 9 mm I.D column packed with Nucleosil C_{18} (particle size 5 µm) The mobile phase consisted of 70% 0.11 mol/l acetate—0.044 mol/l citrate buffer (pH 5.2) and 30% acetonitrile—1 mmol/l sodium dodecyl sulphate containing 3 mg/ml EDTA. The flow-rate was 10 ml/min The detector was set at a potential of +1.06 V. For eliminating short-term fluctuations, the outlet of the column was passed through a vessel with water at room temperature

Extraction procedure

The extraction method was, with a few modifications, the same as that used by Edlund [4] for opiate extraction. To 10 ml of plasma or serum were added 100 μ l of internal standard solution (100 ng/ml 3-PPP) and 1 ml of 1 M ammonium chloride buffer (pH 9 5) The solution was mixed and poured on to a glass extraction column packed with 1 g of Extrelut silica (Merck) After 10 min, elution was carried out with 5 ml of dichloromethane containing 5% 1-butanol The organic phase was extracted with 1 ml of 0.05 M sulphuric acid and the aqueous phase was separated by centrifugation and transferred into a new tube with a pasteur pipette. The aqueous phase was made alkaline with 1 ml of ammonia buffer and extracted with 3 ml of the same solvent as above After centrifugation at 1500 g for 10 min, the aqueous phase was aspirated off and the organic phase was carefully transferred to another tube. The organic phase was evaporated to dryness under a stream of nitrogen at 50°C and dissolved in 100 μ l of the mobile phase. About 50 μ l were injected into the liquid chromatograph. The concentration of ketobemidone was calculated from a standard calibration curve based on six known plasma samples

RESULTS AND DISCUSSION

Extraction

Ketobemidone is an ampholytic compound and the optimal pH for extraction is between 9 and 10 [2]. The use of a solid extraction method in the first step avoids emulsions and gives a good recovery for morphine [4]. The recovery of ketobemidone from a water solution was found to be quantitative for the solid extraction step. However, for plasma a third extraction step was necessary to obtain a sample clean enough for analysis. The total recovery of ketobemidone added to plasma was ca. 80%

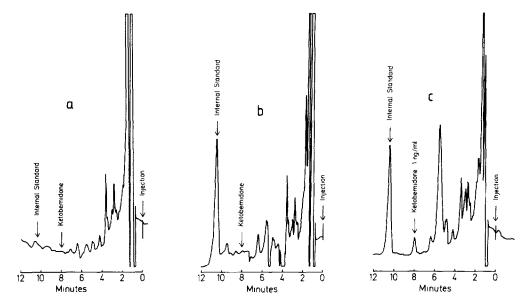
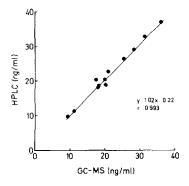


Fig. 1 Chromatograms of plasma extracts of blank plasma (a), plasma containing only the internal standard (b) and plasma containing ketobemidone (1 ng/ml) and the internal standard (c)

Chromatography

The use of reversed-phase ion-pair HPLC has been described earlier for separation of related opium alkaloids [5–7]. The use of a combination of a high concentration of acetonitrile and sodium dodecyl sulphate as the ion-pair reagent provides a good separation of ketobemidone from both endogenous compounds and the internal standard (Fig. 1). A relatively high potential (+1.06 V) was needed for the oxidation of ketobemidone. This is in good agreement with oxidation potentials used in analysis of other analgesics with a non-substituted phenolic group [8].

Standard curves and sensitivity


The plasma standard curves for ketobemidone were linear, both in the range 1-500 ng/ml (r = 0.99) and 1-50 ng/ml (r = 0.99). The sensitivity was ca. 0.5 ng/ml, which is the same as that obtained with GC-MS [2]

HPLC compared to GC-MS

Twelve patient samples were analysed with both HPLC and GC-MS The results (Fig. 2) show a good agreement between the two methods.

Precision

Ketobemidone was added to plasma in known amounts and the precision of the method was tested. Ten samples containing 1 ng/ml ketobemidone and ten samples containing 5 ng/ml ketobemidone were analysed. The results (Table I) show a good precision at both levels for the method.

 $F_{\rm Ig}~2$ Comparison between plasma samples from one patient obtained at different times analysed with HPLC or GC-MS

TABLE I PRECISION OF THE METHOD

Ten samples were analysed with a known amount of ketobemidone added to drug-free plasma

Concentration added (ng/ml)	Concentration found (mean ± S D) (ng/ml)	Coefficient of variation (%)	Relative variance (%)
1	1 2 ± 0 1	01	11 0
5	51 ± 03	0 1	5 2

TABLE II
RETENTION TIMES FOR VARIOUS ANALGESICS

Drug	Retention time (min)	
Ketobemidone	7 70	
3-PPP (internal standard)	10 30	
Salicylic acid	0 72	
Acetylsalicylic acid	0 80	
Acetaminophen (paracetamol)	1 52	
Phenazone	2 02	
Morphine	2 60	
Codeine	4 18	
Naproxen	5 2 5	
Pentazocine	5 83	
Buprenorfin	21 38	
Pethidine (meperidine)	24 40	
Methadone	Not detected	
Dextropropoxyphene	Not detected	
N,N-Dimethyl-3,3-diphenyl-1-methylallylamine*	Not detected	

^{*}The spasmolytic compound included in the ketobernidone product Ketogin

Interferences

Other analgesics and N,N-dimethyl-3,3-diphenyl-1-methylallylamine, the spasmolytic compound included in the ketobemidone product Ketogin[®], were tested for possible interference. None of the compounds were found to interfere (Table II).

ACKNOWLEDGEMENTS

This study was supported by grants from the Swedish Medical Research Council (Project No. 522) and the Karolinska Institute.

REFERENCES

- 1 E Vidic, Arzneim Forsch, 3 (1953) 34
- 2 U Bondesson and P Hartvig, J Chromatogr, 179 (1979) 207
- 3 U Bondesson and P Hartvig, Drug Metab Dispos, 9 (1981) 376
- 4 PO Edlund, J Chromatogr, 206 (1981) 109
- 5 C Oheman, L Maat, K Waliszewski and HC Beyerman, J Chromatogr, 133 (1977) 382
- 6 EJ Kubiak and JW Munson, J Pharm Sci, 69 (1980) 152
- 7 JO Svensson, A Rane, J Sawe and F Sjoqvist, J Chromatogr, 230 (1982) 427
- 8 D A Meinsma, D M Radzik and P T Kissinger, J Liq Chromatogr, 6 (1983) 2311